vitus_wagner: My photo 2005 (Default)
[personal profile] vitus_wagner
Болею я, соображается плохо. Не могу сходу сообразить как решить вот такую задачу - имеется списока моментов перезагрузки компьютера. Как по нему определить, какой должен быть аптайм, чтобы можно было с заданной доверительной вероятностью утверждать, что проблема, вызывавшая эти перезагрузки, устранена?

Решения учитывающие долговременный тренд и суточную динамику неучтенных факторов, способствующих появлению глюка, приветствуются.

На данный момент рабочая гипотеза - блок питания из-за поплытия параметров каких-нибудь конденсаторов перестал вытягивать второй винчестер. То что в компьютере было исходно - тянет, а при работе двух винчестеров одновременно - отказывает от перегрузки и делает brownout.

Date: 2007-11-02 02:05 pm (UTC)
From: [identity profile] oort.livejournal.com
Сорри, про один я не подумал. Но экспоненциальное, насколько я помню, можно (огрубленно) рассматривать как нормальное с сигмой равною мю. И если аптайм вышел за мю плюс две сигмы, то 95% уверенности уже есть.

Date: 2007-11-02 02:18 pm (UTC)
From: [identity profile] oort.livejournal.com
Да, цифирь я не анализировал. Тогда это и не экспоненциальное. Тогда увы, нужен справочник, всех этих изгибов я не помню. :(

Date: 2007-11-02 03:14 pm (UTC)
From: [identity profile] tzirechnoy.livejournal.com
Ты что, второй промежуток, в сутки -- за глюк считаешь?

А вообще -- предлагаю взять максимальное (сутки там или 6 часов -- как хочешь) и не париться.

Date: 2007-11-02 03:38 pm (UTC)
From: [identity profile] tzirechnoy.livejournal.com
Я, собственно, про полученные 50 минут среднее и 1:20 сигма. У меня если ничего не выкидывать -- получается 2:00:05 среднее и 4:05:33 сигма. А если выкинуть -- тот как раз и получится 0:54:55 среднее.

Date: 2007-11-02 04:26 pm (UTC)
From: [identity profile] tzirechnoy.livejournal.com
То есть вот так вот, время жызни системы уменьшается, значит.

Способ для нормального человека -- взять максимум.

Математик можэт начать сравнивать гистограмму полученных данных и кривые плотности вероятности распределений. Для построения того и другого могу посоветовать взять plplot -- там, например, для построения гистограммы:

package require Pltcl

matrix pluptimes f [llength $uptimes]
for {set i 0} { $i < [llength $uptimes] } { incr i } { 
   set nextuptime [expr [lindex $uptimes $i] * 1.0]
   pluptimes $i = $nextuptime
};

plhist [llength $uptimes] pluptimes 0.0 10000.0 30 PL_HIST_DEFAULT
plreplot
pleop



На посмотреть можэшь начать с Гамма-распределения -- у него по мат.ожыданию и дисперсии легко считаются параметры. Экспоненцыальное тебе не очень подойдёт -- у него мат.ожыдание равно сигме, что у тебя не выполняется.

Хотя, для таких цэлей... Собственно, если на графике какое-либо из найденных дажэ экспоненцыальных (либо с параметром 1/<среднее>, либо 1/<сигма>, либо что-то между ними) будет примерно соответствовать твоим точкам -- возьми его.

Да, то, что тебе нужно, после того, как нашёл распределение -- чтобы функцыя распределения от твоего uptimeа была большэ, чем твоя заданная доверительная вероятность. Считать, соответственно, либо функцыю распределения вероятности от твоего текущего uptime для твоего найденного распределения -- получишь в результате максимальный "доверительный интэрвал". Либо искать формулу для квантили твоего распределения с заданной доверительной вероятностью -- и сравнивать результат со своим uptimeом.


Если полезешь за гамма-распределением -- я брал все эти бэта-функцыи как определённые интэгралы. ::math::calculus::integralExpr, math::calculus идёт в tcllib. 1000 шагов за глаза хватает обычно.

Date: 2007-11-02 06:50 pm (UTC)
From: [identity profile] oort.livejournal.com
(придя с работы и подумав) Характер распределения должен задаваться физикой процесса, а не анализом средней и сигмы пары выборок. Если нет предположения, какое распределение должно быть, мне кажется, разумнее принять гипотезу о ненормально выглядящем нормальном (или вычислительно сводимом к нему экспоненциальном), чем подбирать нужную кривую по форме.
А без осознанного задания распределения любая цифирь будет отфонарной.
Впрочем, решение, насколько я понимаю, уже принято. :)

Date: 2007-11-02 06:57 pm (UTC)
From: [identity profile] tzirechnoy.livejournal.com
А как это экспоненцыальное сводить к нормальному??

Теоретически -- базу даёт именно физика. Практически -- после физики идёт проверка теории практикой. Невыдержывающие гипотезы выкидываются.

На нормальное не с чего быть похожым. Экспоненцыальное -- ещё понятно. Но у экспоненцыального мат.ожыдание равно сигме, а тут отличаются вдвое.

Date: 2007-11-03 02:48 pm (UTC)
From: [identity profile] tzirechnoy.livejournal.com
Вообще-то -- с экспоненцыальным. А Пуассона -- вообще дискретное, оно не для интэрвалов.

Profile

vitus_wagner: My photo 2005 (Default)
vitus_wagner

June 2025

S M T W T F S
1 23 4 56 7
89 1011121314
15161718192021
22232425262728
2930     

Most Popular Tags

Page Summary

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 12th, 2025 08:39 am
Powered by Dreamwidth Studios