Искусственные экосистемы
Apr. 18th, 2012 11:36 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Тут в одном из предыдущих тредов возник вопрос, что еще ни одна попытка создать искусственную замкнутую экосистему не увенчалась успехом.
Надо бы вообще вспомнить, чему меня четверть века назад на эту тему в университете учили, все-таки геохимия ландшафта имеет прямое отношение к круговоротам в экосистемах.
1. Большая часть попыток создать искусственную экосистему ориентировалась на системы обеспечения для космических кораблей. То есть эта система должна быть маленькой и легкой. Фактически вся биомасса продуцированная такой системой должна была потребляться Homo Sapiens. Такую систему, действительно, хрен стабилизируешь.
Вспомним, что переплыть Атлантику на парусной лодке длиной менее 3 метров удалось только в конце XX века, в то время как корабли всего в десять раз длиннее прекрасно плавали через ту же Атланику за 500 лет до этого. Размер имеет значение. Те же самые проблемы, кстати, сейчас испытывает термоядерная энергетика. Сделать реактор они могут, но добиться устойчивости и положительного выхода энергии теоретически тем проще, чем реактор больше. А на большой реактор как-то денег не дают.
Так и тут. Мы точно знаем, что сферическая экосистема в вакууме диаметром 12 тысяч км обеспечивает приемлемую стабильность. Вопрос в том, насколько можно ее уменьшить чтобы сохранить приемлемую стабильность при приемлемых трудозатратах на управляющие воздействия со стороны людей.
Начинать эксперименты надо, пожалуй, с искусственной экосистемы размером в несколько гектаров, имеющей полноценный почвенный покров (пару метров в глубину) то есть десятки тысяч тонн рыхлого грунта.
Больше - уже сложно изолировать от окружающей среды. Меньше - слишком большой относительно всей экосистемы вес начинают иметь высшие млекопитающие (люди).
А для колоний на других планетах первые сотни метров это как раз подходящий размер куполов. Очевидно, что стометровый купол - это не обиташище для тысяч человек. Максимум для десятков. Но сто стометровых купалов разделенных шлюзами это куда правильнее, чем один километровый - и строить можно постепенно, по мере роста населения, и в случае аварии есть куда отступать.
2. Искусственная экосистема не обязана быть замкнутой. У нас вокруг целая планета есть. Как известно, вулканические пеплы - это очен плодородная почва, осваиваемая высшими растениями в считанные сезоны, и дающая колоссальные урожаи. Реголит по своему составу достаточно близок к вулканическим пеплам. На Марсе с этим дело хуже, там какие-то свои процессы гипергенеза идут, и пока мы не поизучаем его как следует (а как следует - это сотни человеко-лет как минимум) мы не будем толком знать какими элементами эти процессы обогощают почвы, а какими - обедняют. Но в принципе, земная флора способна расти почти на чем угодно.
Запасы воды тоже можно пополнять. Подозреваю, что наибольшие сложности возникнут с пополнением воздуха внутри купола азотом. Экосистема это вам не один Homo Sapiens. Клубеньковые бактерии тоже кушать должны.
Поэтому может быть не 80, но 60% азота (при давлении 0,5атм) в воздухе должно быть.
Надо бы вообще вспомнить, чему меня четверть века назад на эту тему в университете учили, все-таки геохимия ландшафта имеет прямое отношение к круговоротам в экосистемах.
1. Большая часть попыток создать искусственную экосистему ориентировалась на системы обеспечения для космических кораблей. То есть эта система должна быть маленькой и легкой. Фактически вся биомасса продуцированная такой системой должна была потребляться Homo Sapiens. Такую систему, действительно, хрен стабилизируешь.
Вспомним, что переплыть Атлантику на парусной лодке длиной менее 3 метров удалось только в конце XX века, в то время как корабли всего в десять раз длиннее прекрасно плавали через ту же Атланику за 500 лет до этого. Размер имеет значение. Те же самые проблемы, кстати, сейчас испытывает термоядерная энергетика. Сделать реактор они могут, но добиться устойчивости и положительного выхода энергии теоретически тем проще, чем реактор больше. А на большой реактор как-то денег не дают.
Так и тут. Мы точно знаем, что сферическая экосистема в вакууме диаметром 12 тысяч км обеспечивает приемлемую стабильность. Вопрос в том, насколько можно ее уменьшить чтобы сохранить приемлемую стабильность при приемлемых трудозатратах на управляющие воздействия со стороны людей.
Начинать эксперименты надо, пожалуй, с искусственной экосистемы размером в несколько гектаров, имеющей полноценный почвенный покров (пару метров в глубину) то есть десятки тысяч тонн рыхлого грунта.
Больше - уже сложно изолировать от окружающей среды. Меньше - слишком большой относительно всей экосистемы вес начинают иметь высшие млекопитающие (люди).
А для колоний на других планетах первые сотни метров это как раз подходящий размер куполов. Очевидно, что стометровый купол - это не обиташище для тысяч человек. Максимум для десятков. Но сто стометровых купалов разделенных шлюзами это куда правильнее, чем один километровый - и строить можно постепенно, по мере роста населения, и в случае аварии есть куда отступать.
2. Искусственная экосистема не обязана быть замкнутой. У нас вокруг целая планета есть. Как известно, вулканические пеплы - это очен плодородная почва, осваиваемая высшими растениями в считанные сезоны, и дающая колоссальные урожаи. Реголит по своему составу достаточно близок к вулканическим пеплам. На Марсе с этим дело хуже, там какие-то свои процессы гипергенеза идут, и пока мы не поизучаем его как следует (а как следует - это сотни человеко-лет как минимум) мы не будем толком знать какими элементами эти процессы обогощают почвы, а какими - обедняют. Но в принципе, земная флора способна расти почти на чем угодно.
Запасы воды тоже можно пополнять. Подозреваю, что наибольшие сложности возникнут с пополнением воздуха внутри купола азотом. Экосистема это вам не один Homo Sapiens. Клубеньковые бактерии тоже кушать должны.
Поэтому может быть не 80, но 60% азота (при давлении 0,5атм) в воздухе должно быть.
no subject
Date: 2012-04-20 10:16 am (UTC)Радиус орбиты Марса 1.5 а.е. Энергия уменьшается пропорционально квадрату расстояния. Соответственно, на уровне орбины Марса на квадрат будет приходиться всегдо в два c четвертью раза меньше, чем на уровне орбиты Земли.
Получается 600Ватт/м2.
Этого более чем достаточно для многих земных растений, привыкших, например расти в тени более высоких растений, или просто живущих на широте косинус которой равен 1/2.
А насчет радиации вы мне подали хорошую идею - покрыть купол люминофором, который будет преобразовывать вредную радиацию в полезную (то есть видимый свет).
Этак мы еще ват 300 отыграем.
no subject
Date: 2012-04-20 12:13 pm (UTC)Проблема не в том, что расти не будет, а в том, что продуктивность на гектар жидковата выйдет. А купол вряд ли выйдет дешевым.